Team Details

Photo

Arjun Kumar Bose Arnob

M.Sc. in Computer Science

Research Assistant

Contact:

Advanced Machine Intelligence Research Lab
(AMIRL), Block-B, Banani. Dhaka-1213, Bangladesh

Telephone:

Office:
Cell:

Publication Profile:
Google Scholar Research Gate
Web Page & Social Link:
Web Page Github LinkedIn Kaggle

EDUCATION

American International University-Bangladesh (AIUB)

  • Master of Science (M.Sc) in Computer Science (CS)
    Specialization: Intelligent Systems
    CGPA: 4.00/4.00

  • Bachelor of Science (B.Sc) in Computer Science & Engineering (CSE)
    Major: Software Engineering
    CGPA: 3.83/4.00

Seeking a position in Computer Science to share my knowledge in AI, Machine Learning, and Cybersecurity while fostering innovation and critical thinking. Committed to academic excellence, research, and student mentorship.

Journal Articles (Published)

[J.1] Arnob, A. K. B., Mridha, M. F., Safran, M., Amiruzzaman, M., & Islam, M. R. (2025). An enhanced LSTM approach for detecting IoT-based DDoS attacks using honeypot data. International Journal of Computational Intelligence Systems, 18(1), 1–22. https://doi.org/10.1007/s44196-025-00741-7
(Scopus Q2)

[J.2] Arnob, A. K. B., Chowdhury, R. R., Chaiti, N. A., Saha, S., & Roy, A. (2025). A comprehensive systematic review of intrusion detection systems: Emerging techniques, challenges, and future research directions. Journal of Edge Computing (Early Access). https://doi.org/10.55056/jec.885
(Scopus-indexed)

[J.3] Arnob, A. K. B., & Jony, A. I. (2024). Comparing machine learning algorithms for breast cancer diagnosis: Wisconsin diagnostic dataset analysis. International Journal of Data Science and Big Data Analytics, 4(2), 1–11. https://doi.org/10.51483/IJDSBDA.4.2.2024.1-11

[J.4] Arnob, A. K. B., & Jony, A. I. (2024). Enhancing IoT security: A deep learning approach with feedforward neural network for detecting cyber attacks in IoT. Malaysian Journal of Science and Advanced Technology, 4(4), 413–420. https://doi.org/10.56532/mjsat.v4i4.299

[J.5] Jony, A. I., & Arnob, A. K. B. (2024). A long short-term memory based approach for detecting cyber attacks in IoT using CIC-IoT2023 dataset. Journal of Edge Computing, 3(1), 28–42. https://doi.org/10.55056/jec.648
(Scopus-indexed)

[J.6] Jony, A. I., & Arnob, A. K. B. (2024). Deep learning paradigms for breast cancer diagnosis: A comparative study on Wisconsin diagnostic dataset. Malaysian Journal of Science and Advanced Technology, 4(2), 109–117. https://doi.org/10.56532/mjsat.v4i2.245

[J.7] Jony, A. I., & Arnob, A. K. B. (2024). Securing the Internet of Things: Evaluating machine learning algorithms for detecting IoT cyberattacks using CIC-IoT2023 dataset. International Journal of Information Technology and Computer Science, 16(4), 56–65. https://doi.org/10.5815/ijitcs.2024.04.04
(Scopus Q3)

 

Conference Papers

[C.1] Arnob, A. K. B., Naim, M. A., Rezwan, T., & Hasan, M. M. (2024). Utilizing kidney ontology for data-driven exploration of potential biomarkers in kidney diseases: Introducing the Kidney Diseases Biomarker Ontology (KDBO). Proceedings of the 3rd International Conference on Computing Advancements (ICCA 2024) (pp. 1–8). ACM. https://doi.org/10.1145/3723178.3723230

This page viewed total 1324 times